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We show how the Implicit Regularization Technique (IRT) can be used for the perturba-
tive renormalization of a simple field theoretical model generally used as a test theory
for new techniques. While IRT has been applied successfully in many problems involv-
ing symmetry-breaking anomalies and nonabelian gauge groups, all at one-loop level,
this is the first attempt at a generalization of the technique for perturbative renormaliza-
tion. We show that the overlapping divergent loops can be given a completely algebraic
treatment. We display the connection between renormalization and counterterms in the
Lagrangian. The algebraic advantages make IRT worth studying for perturbative renor-
malization of gauge theories.
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1. INTRODUCTION

Quantum field theoretical predictions of physical quantities should in princi-
ple be independent of the particular scheme used to renormalize the theory. The
renormalization program gets rid of the singularities by redefining the parameters
in the Lagrangian in a consistent way for a renormalizable model. In this process
we must also make sure that the relevant symmetries of the underlying theory are
preserved and must therefore avoid the appearance of spurious anomalies, which
otherwise would have to be controlled order by order in perturbation theory by
imposing symmetry restoring constraint equations.

As for the existing regularization schemes, while for the theories with low
symmetry content nearly all regulators do a good job, this is not the case for most
theories of particle interactions in which gauge symmetry, supersymmetry (SUSY),
and the like play a fundamental role. Dimensional Regularization (DR) (Bollini and
Giambiagi, 1972; ’t Hooft and Veltman, 1972a,b) is an efficient and pragmatical
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method that explicitly preserves gauge symmetry. However in the presence of
dimension specific objects such asγ 5 matrices, a suitable generalization of the
Dirac algebra must be constructed to be compatible with analytical continuation
on the space-time dimension. This is the case for the Electroweak sector of the
Standard Model. Since chiral symmetry is broken in this case, the corresponding
Ward–Slavnov–Taylor identities must be imposed order by order, which makes
the computations beyond the one-loop order very hard.

For SUSY theories, due to the fact that the equality between Bose and Fermi
degrees of freedom only holds for specific values of the space-time dimension,
SUSY is broken in DR. A naive scheme (Dimensional Reduction) in which the
field components are left unchanged while the loop integrals are performed ind
dimensions can be shown to be inconsistent, see Siegl (1980). Similar problems
arise in Chern–Simons field theories in which the Levi–Civita tensor is the three-
dimensional analog of theγ 5 matrix (Carringtonet al., 1999; Chaichian and Chen,
1998; Giavarini and Martin, 1992; Martin, 1990).

A particularly interesting regularization independent framework is the Differ-
ential Renormalization Program pioneered by Freedmanet al. (1992). The basic
idea of this scheme is that renormalization comes from the fact that products of
propagators must be extended to distributions so that a Fourier transform is well
defined. Working in (Euclidean) coordinate space one writes the amplitude as a
derivative of a distribution less divergent at coincident points. The derivatives are
understood in the sense of distribution theory, i.e. acting formally by parts. The
amplitudes written in this way are identical to the bare ones for separate points
but behave well at coincident points. An intrinsic arbitrary scale appears in this
process which is used as a Callan–Symanzik renormalization group parameter.
The advantage of this method is that it works in integer space-time dimension, and
it has been shown to yield satisfactory results where it was tested (delÁguilaet al.,
1997, 1998, 1999; deĺAguila and Pérez-Victoria, 1998; Hahn and P´erez-Victoria,
1999; Pérez-Victoria, 1998). However no general procedure using Differential
Renormalization beyond one-loop order, such that gauge invariance is automatic,
has been constructed yet.

Recently an essentially regularization independent procedure has been ad-
vanced (see Battistel, 1999; Battistel,et al., 1998; Brizolaet al., 1999, 2002;
Sampaioet al., 2002; Scarpelliet al., 2001). It presents the same consistency as
Differential Regularization, working however in momentum space. It has been
recently shown that the method respects both abelian and nonabelian symmetries
at a few loops level and the infrared divergence can be treated by the same proce-
dure constructed for ultraviolet divergences, without any modification, as has been
shown for the gluon self-energy (Sampaio,et al., 2002). All these results indicate
that the method deserves further investigation, for example, the question ofn-loops
and perturbative renormalization in a theory. Encouraged by the previous results,
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and aware of the difficulties of setting up a consistent scheme for perturbative
renormalization where there are already so many of them so well established, for
the sake of a complete evaluation of the Implicit Regularization Technique, we
take one step in this direction in the present contribution. Since this is a major
task, already pursued by several sophisticated schemes, we start by investigating
a simple but nontrivial theory (involving, e.g. overlapping divergences) to test our
method further. If it succeeds it will be a most important next step to construct a
perturbativen-loop renormalization scheme in the spirit and consistency of e.g.
BPHZ and others. For our present purposes we study specifically theφ3

4 theory, to
n-loop order.

The IRT is essentially regularization independent in the sense that a spe-
cific regulator needs never be used. A convenient identity at level of the inte-
grand enables us to rewrite the amplitude as a sum of three types of contribu-
tions namely local divergences (basic divergent integrals which characterize the
divergent structure of theory), nonlocal divergences typical of divergent substruc-
tures contributions), and finite contributions. The local divergences obtained in
this way are equivalent to those obtained by performing a Taylor expansion (like
in BPHZ) only for primitive diagrams, with no subdivergences. In the case sub-
divergences are present some more subtle differences between our method and
BPHZ should be pointed out: a) Taylor expansions modify the original Feynman
integrand; this procedure may therefore violate symmetries. We circumvent this
problem by means of using a mathematical identity, preserving thus the original
content of the original Feynman amplitude. b) In order to classify the subdiver-
gences, BPHZ uses graphic representation (forest formula). In our procedure we
identify, in terms of integrals, divergences which occurred at lower loop orders.
This avoids in particular the complicated topological graphs structures and sub-
stitutes this step by an algebraic procedure, (at least in this simple case) from
which the counterterms appear in a natural systematic way. Specific examples are
given in the text. Moreover, just as in Differential Renormalization, arbitrary lo-
cal terms can be duly parametrized and properly adjusted on physical grounds.
This is particularly important for finite renormalization in order to clear the cal-
culation of regularization ambiguities. Finally our framework lives in the integer
space-time dimension which avoids well-known problems with dimension-specific
theories.

2. RENORMALIZATION BY THE IMPLICIT
REGULARIZATION TECHNIQUE

In this section we extent a technique first designed for one (Battistel, 1999;
Battistelet al., 1998; Scarpelliet al., 2001) and two-loop calculations (Brizola
et al., 1999) to proventhorder renormalizability.
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In order to illustrate the procedure, consider the following divergent ampli-
tude, typical of one-loop order:∫

3

d4k

(2π )4

1

[(k+ p)2−m2](k2−m2)
. (1)

The symbol3 under the integral sign presupposes, as discussed, an implicit regu-
larization. Now, in order to separate the logarithmic divergence from the finite part,
we use the following identity in the factor involving the external momentump:

1

[(k+ p)2−m2]
=

N∑
j=0

(−1) j (p2+ 2p · k) j

(k2−m2) j+1

+ (−1)N+1(p2+ 2p · k)N+1

(k2−m2)N+1[(k+ p)2−m2]
. (2)

In the above expressionN is chosen so that the last term is finite under integration
overk. Notice also that in the first term in Eq. (2), the external momentum appears
only in the numerator and thus after integration it can yield at most polynomials in
p multiplied by divergences. For our present example we needN = 0, since we
are dealing with a logarithmic divergence. We can rewrite (1) using (2) as

I +
∫
3

d4k

(2π )4

1

(k2−m2)2
−
∫

d4k

(2π )4

p2+ 2p · k
[(k+ p)2−m2](k2−m2)2

. (3)

Now only the first of these two integrals is divergent. The others can be easily
integrated out to yield

I = Ilog(m2)− i

(4π )2
Z0(m2, p2) (4)

where

Ilog(m2) =
∫
3

d4k

(2π )4

1

(k2−m2)2
(5)

and

Z0(m2, p2) =
∫ 1

0
dzln

(
p2z(1− z)−m2

−m2

)
. (6)

Note that, since no explicit form for the regulator has been used, one can make
immediate contact with other regularizations. Details of calculations of several
one-loop amplitudes and their associated Ward identities by using this method can
be found in Scarpelliet al., 2001.

By convenience we divide the diagrams which contribute to a given order in
two classes: the first which does not contain diagrams which possess two-point
functions as subdivergences and in the second class those which do.
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Let us start with the first class of diagrams. To show how the procedure
works it is enough to consider a general Feynman amplitude with one external
momentump, one coupling constantλ, and one mass parameterm. We work in
the 4-dimensional space-time although the generalization to any integer dimension
is straightforward. We denote by q a sum of internal momentaki . The amplitude
in question can always be written as

0 =
n∏

i=0

∫
3

d4ki

(2π )4
R(p, q, m, λ)

[
l∏

j=1

f j (p, qj , m2)

]
(7)

where

f j (p, qj , m2) = 1

[( p− qj )2−m2]
(8)

and

l = number off structures

n = number of loops.

Note that we have explicitly separated the terms involving the external mo-
mentum in the denominator, from which nonlocal divergent contributions can arise
after integration over the internal momenta. The structureR(p, q, m, λ) contains
all other ingredients of the amplitude such as coupling constants, results of Dirac
traces, and so on.

For simplicity we adopt the following notation

0 = (5R)(5 f ) (9)

where

(5R) =
n∏

i=1

∫
3

d4ki

(2π )4
R(p, q, m, λ) (10)

and

(5 f ) =
l∏

j=1

f j (p, qj , m2). (11)

As discussed before the source of all possible troubles in the renormalization
process will arise from the structure (5 f ). Our method focus attention on these
structures. In order to clearly separate finite, local divergences (whose dependence
on the external momenta is only a polynomial) from the nonlocal divergences we
use a strategy which is completely based on the identity (2).
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We define the operatorT D which acts on each structuref in the following
way

T0 f = 1

q2
j −m2

+ 2p · qj − p2(
q2

j −m2
) {

1

[( p− qj )2−m2]

}
(12)

T1 f = 1

q2
j −m2

+ (2p · qj − p2)(
q2

j −m2
)2 + (2p · qj − p2)2(

q2
j −m2

)2 {
1

[( p− qj )2−m2]

}
(13)

T2 f = 1

q2
j −m2

+ (2p · qj − p2)(
q2

j −m2
)2 + (2p · qj − p2)2(

q2
j −m2

)3
+ (2p · qj − p2)3(

q2
j −m2

)3 {
1

[( p− qj )2−m2]

}
. (14)

Note that the action of the operatorT D is equivalent to a Taylor expansion around
zero external momentum where the first terms are kept and the rest of the series is
resumed, yielding thus a convenient identity. Note also that the degree of divergence
of the various terms is decreasing.

The procedure we have in mind consists of applying the operation, in a par-
ticular amplitude with superficial degree of divergenceD, to each functionf j

T D0 = (5R)
l∏

j=1

T D
j f j (p, qj , m2). (15)

The result of the operation will always have the form

T D f (p, q, m2) = f div(p, q, m2)+ f fin(p, q, m2). (16)

We define

f div(p, q, m2) =
D∑

i=0

f i (p, q, m2). (17)

Let us exemplify. Take a quadratically divergent amplitude. To each contribution
of the form

1

(p− qj )2−m2

we associate

f 0(q, m2) = 1

q2−m2
(18)

f 1(p, q, m2) = 2p · q − p2

(q2−m2)2
(19)
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f 2(p, q, m2) = (2p · q)2

(q2−m2)2
(20)

and

f fin(p, q, m2) = p4− 4p2(p · q)

(q2−m2)3
+ (2p · q − p2)3

(q2−m2)3[( p− qj )2−m2]
. (21)

The definitions (18), (19), (20), and (21) are not unique. It is simply convenient
for our purposes. Using these we rewrite the amplitude as a sum of various con-
tributions. According to our notation

T D0 = (5R)
l∏

j=1

[
f div

j (p, q, m2)+ f fin
j (p, q, m2)

]
. (22)

In this way we can identify three distinct contributions for the amplitude

T D0 = 01
fin + 0local+ 0nonlocal (23)

where

01
fin = (5R)

l∏
j=1

f fin
j (p, q, m2). (24)

The second contribution contains only local divergences and, for some particular
(5R) structures, it can contain finite contributions too. It is identified as

0local = (5R)
l∏

j=1

f div
j (p, q, m2)

= 02
fin + 0div

local. (25)

These local divergences correspond to counterterms which are characteristic of
the order we are renormalizing. For example, they can have the form∫

3

d4k

(2π )4

1

k2−m2
+ p2I log(m2)+ finite part. (26)

The last term in equation (23), namely the cross-terms, contain finite contributions
as well as “nonlocal” divergences.

0nonlocal= 03
fin + 0div

nonlocal. (27)

These nonlocal divergence contributions will always appear due to the divergent
subdiagrams (beyond two-point functions) contained in the graph. As we will
show next in a particular example, the renormalization of previous orders will
always allow one to cancel these contributions if the theory is renormalizable. In
the present scheme the result is automatic and follows from the operation we have
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just defined, in an algebraic manner. There is no need for graphic representations
of relevant contributions, although it is possible.

The renormalized amplitude say, innth loop order, can therefore be defined as

0
(n)
R = T D0(n) − 0div(n)

local − 0div(n)
nonlocal

= 01(n)
fin + 02(n)

fin + 03(n)
fin (28)

where the contributions0div(n)
local and0div(n)

nonlocal contain the counterterms typical of
ordern as well as the counterterms coming from divergent subdiagrams of previous
order as will become clear in the examples. Notice from the equation above that
our framework automatically delivers the counterterms

01
CT = −0div

local− 0div
nonlocal (29)

and just as in BPHZ, subtracting off the necessary counterterms leaves us with
the finite part of the amplitude. The main difference between our method and
BPHZ is that we never modify the original Feynman amplitude, since we use an
identity at the level of the integrand and BPHZ, a Taylor expansion. An immediate
consequence of this difference is that in the present procedure symmetries can
always be preserved as has been shown in Battistel, 1999; Battistelet al., 1998;
Brizdaet al., 1999; Sampaioet al., 2002; Scarpelliet al., 2001.

Now we proceed to evaluate the second class of diagrams, namely those
which contain two-point functions as subdiagrams. Let us callU all the two-point
diagrams contained in a given amplitude0. It is easy to see that they can be factored
out inside of the total amplitude in the following sense

0 = all

∏
∑

j∈U
R j6

(l )
j

(
q2

j

)
(30)

whereR j stands for the remaining pieces in the amplitude,j characterizes a
specific two-point function,qj is one of the integration momenta (but external to∑

j ). Now since the operationT D0 is an identity, i.e.T D0 = 0 we can define
the partially renormalized amplitude (with all two-point function subdiagrams
properly renormalized) as follows

0̄ = 0 + 02
CT (31)

therefore we have

02
CT =

∏
all

∑
j∈U
R j

[
δ

(l )
j m2− A(l )

j q2
j

]
(32)

and02
CT are all counterterms characteristic subdiagrams involving two-point func-

tions.δ(l )
j m2 stands for the mass renormalization andA(l )

j for the wave function
renormalization. Explicit expressions for these objects will be given in the follow-
ing section where a specific example is worked out. In order to get the renormalized
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amplitude of ordern from 0̄ one proceeds in the same way as for diagrams of class
one defined above. We thus have

0R = T D0̄ − 0̄div
local− 0̄div

nonlocal

= 0̄1
fin + 0̄2

fin + 0̄3
fin. (33)

The whole procedure will become apparent in the concrete example of the follow-
ing section.

3. λφ3
6 THEORY AS AN EXAMPLE

Consider theλφ3
6 theory Lagrangian,

L = 1

2

[
∂µφ0(x))2−m2

0φ
2
0(x)

]− λ0

3!
φ3

0(x) (34)

It is easy to show that a Feynman graph in this theory has the superficial degree of
divergenceD written as

D = 6− 2N (35)

whereN is the number of external legs. This means that only Green’s functions
with N ≤ 3 are divergent. For the one-point functions we will assume that we can
impose the condition〈0 | φ̂ | 0〉 = 0 at all orders and we will not worry about one-
point diagrams. We will just work with the two- and three-point Green’s functions
which possess quadratic and logarithmic divergences.

We will effect the renormalization through the redefinition of the Lagrangian
parameters as:

φ0 =
√

Zφφ (36)

m2
0 = Zmm2 (37)

λ0 = Zλλ (38)

which allow the Lagrangian to be rewritten as

L = LF+ LCT (39)

where

LF = 1

2

[
(∂µφ

2−m2φ2
]− λ

3!
φ3 (40)

and

LCT = 1

2

[
(Zφ − 1)(∂µφ)2− (ZφZm − 1)m2φ2

]− (Z3/2
φ Zλ − 1

) λ
3!
φ3 (41)
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At thenthorder one has

LCT = L(1)
CT+ L(2)

CT+ . . .L(n)
CT (42)

We effect the renormalization at each order imposing the conditions:

• Relative to the propagator

D−1
R (0)= −m2 (43)

and ∣∣∣∣ ∂∂p2
D−1

R (p2)

∣∣∣∣
p=0

= 1 (44)

• Relative to vertex function

−i MR(0)= −iλ(1+ finite corrections) (45)

We can rewrite the bare Lagrangian (34) as

L = 1

2

[
(1+ A)(∂µφ)2− (m2+ δm2)φ2

]− (1+ B)
λ

3!
φ3. (46)

in order to identify the renormalization constants

Z(n)
φ = 1+ A(n) (47)

Z(n)
m =

1

Z(n)
φ m2

(
m2+ δ(n)m2

)
(48)

Z(n)
λ =

1+ B(n)(
Z(n)
φ

)3/2 (49)

at each order by imposing renormalization conditions. Since, in practice we renor-
malize each diagram of the given order, the counterterms can be written as

B(n) =
a∑

j=1

+B(n)
j (50)

A(n) =
b∑

j=1

A(n)
j (51)

δ(n)m2 =
b∑

j=1

δ
(n)
j m2 (52)

herea, (b) is the number of three (two)-point diagrams which contribute to ordern.
At thenthorder the inverse propagator function is written as

D−1
R (p2) = p2−m2−6(1)

R (p2)−6(2)
R (p2) . . .
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−δ(n)m2+ A(n) p2−6(n)(p2) (53)

and the vertex function as

−i MR(p, p′) = −iλ{1+ V (1)
R (p, p′)+ V (2)

R (p, p′) . . .

+V (n)(p, p′)+ B(n)}. (54)

Using the technique in each diagram contained in the6(n)(p2) and in theV (n)(p, p′)
amplitudes we separate the local divergent part and identify all divergent substruc-
tures. Imposing renormalization conditions we can always identifyA(n), δ(n)m2,
andB(n).

In order to identify the counterterms of the order in question and to write the
nonlocal ones in terms of divergences of lower orders, showing thus that one need
not worry about them, it is convenient to define the following functions:

• Relative to vertex correction counterterms (typej diagrams)

i B(n)
j = (−iλ)2n+1(i )3n I (n)

log1(m
2,3)

= 0div(n)
local (55)

where

I (n)
log1(m

2,3) =
n∏

i=1

∫
3

d6ki

(2π )6
ϒ (n)(k1, k2, . . . kn, m2) (56)

with

ϒ (n)(k1, k2, . . . kn, m2)

= 1(
k2

1 −m2
)3
(

n∏
j=2

1(
k2

j −m2
)2
)

Q(ki , ki+1, m2). (57)

For n = 1

Q = 1, (58)

otherwise

Q =
n−1∏
i=1

{
1

[(ki − ki+1)2−m2]

}
. (59)

Notice that what we have defined here are generalizations of the simple
one-loop logarithmically divergent integralI log(m2) which we encountered
in our one-loop example.
• Relative to all finite contributions to vertex corrections (typej diagram),

which correspond to the renormalized diagram

0
(n)
R = 01(n)

fin − 03(n)
fin
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= (−iλ)2n+1(i )3n
n∏

i=1

∫
d6ki

(2π )6
4(n)(k1, . . . , kn, p, p′, m2). (60)

• Relative to the finite contribution, defined in Eq. (24) for the overlapping
diagrams

0
1(n)
fin = (5R)

n∏
i=1

f fin
i (p, ki , m2)

= (−iλ)2n(i )3n−1

2

n∏
i=1

∫
d6ki

(2π )6
2(n)(k1, . . . , kn, p, m2). (61)

In each order there will appear new types of divergent integrals. Therefore
throughout the text we will define some new divergent integrals similar to the ones
above (Eq. (56)). These quantities are always independent of external momenta.
Next we apply the procedure to all diagrams up to two loops in order to exemplify
how the method works.

Tonthorder it suffices to treat four cases, the first related to the vertex function
and the others to the self-energy, which contain the overlapping divergences, two-
point functions as subdivergences, and nested two-point functions.

3.1. Three-Point Functions

3.1.1. The One-Loop Order

The vertex correction has only one contribution at one loop level whose
diagram is depicted in Fig. 1. The corresponding amplitude is

0 = −iV (1)(p, p′)

= λ3
∫
3

d6k

(2π )6

1

(k2−m2)[( p− k)2−m2][( p′ − k)2−m2]
. (62)

Using the notation introduced in section 2 we write

−iV (1)(p, p′) =
∫
3

d6k

(2π )6
R(k, m2, λ) f (p, k, m2) f (p′, k, m2) (63)

Fig. 1. One-loop vertex correction−iV (1)(p, p′).
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with

R(k, m2, λ) = λ3

(k2−m2)
. (64)

According to IRT we write, given that the divergence is logarithmic and therefore
D = 0

−iT 0V (1)(p, p′) = 0div
local+ 01

fin + 03
fin (65)

(recall that in this case02
fin = 0div

nonlocal= 0) where

0div
local =

∫
3

d6k

(2π )6
R(k, m2, λ) f 0(k, m2) f 0(k, m2)

= λ3
∫
3

d6k

(2π )6

1

(k2−m2)3

= λ3I (1)
log1(m

2,3)

= i B(1) (66)

and

0R = 01
fin + 03

fin

= λ3
∫

d6k

(2π )6
4(1)(k, p, p′, m2) (67)

with

λ34(1)R(k, p, p′, m2) = R(k, m2, λ){ f fin(k, p, m2) f fin(k, p′, m2)

+ f 0(k, m2) f fin(k, p′, m2)

+ f fin(k, p, m2) f 0(k, m2)}. (68)

Notice that the finite part of this diagram contains the cross-termsf0. ffin in
since its integral is finite.

3.1.2. The Two-Loop Order

Three diagram types contribute to the vertex correction at two loops. The total
amplitude can be written as

−iV (2)(p, p′) = −3iV (2)
1 (p, p′)− iV (2)

2 (p, p′)− iV (2)
3 (p, p′). (69)

In this order the counterterms will be identified as

B(n) = 3B(2)
1 + B(2)

2 + B(2)
3 . (70)
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Fig. 2. The two-loop vertex correction contribution−iV (2)
1 (p, p′).

The first amplitudeiV (2)
1 (p, p′) corresponds to the diagram in Fig. 2. This di-

agram contains a quadratic divergent subdiagram (a first-order, two-point function
correction). It can be completely separated in terms of the internal momentumk1

as mentioned before. Then

0 = −iV (2)
1 (p, p′)

=
∫
3

d6k1

(2π )6

(−iλ)3(i )4(
k2

1 −m2
)2

[( p− k1)2−m2][( p′ − k1)2−m2]

× {i6(1)
(
k2

1

)}
(71)

wherei
∑(1)(k2

1) is the one-loop self-energy amplitude. The one-loop renormalized
self-energy is

6
(1)
R

(
k2

1

) = 6(1)
CT

(
k2

1

)+6(1)
(
k2

1

)
(72)

where

6
(1)
CT

(
k2

1

) = δ(1)m2− A(1)k2
1. (73)

Thus the amplitude containing no two-point function substructure is directly ob-
tained as

0̄ = 0 + 02
CT

=
∫
3

d6k1

(2π )6

(−iλ)3(i )4(
k2

1 −m2
)2

[( p− k1)2−m2][( p′ − k1)2−m2]

×
{
i6(1)

R

(
k2

1

)}
. (74)

All possible nonlocal divergences in this case will be canceled when we consider
the one-loop renormalization. Next we use the IRT for the logarithmic divergence.
In our notation we obtain

−iT 00̄ = 0̄div
local+ 0̄1

fin + 03
fin (75)
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with∫
d6k2

(2π )6
R(k1, k2, m2, λ) = (−iλ)3(i )4(

k2
1 −m2

)2 {i6(1)
R

(
k2

1

)} = R(k1, m2, λ). (76)

The explicit expression fori
∑(1)

R (k2
1) will be given in Eq. (107). Using the above

expression forR(k1, m2, λ)

0̄div
local =

∫
3

d6k2

(2π )6
R(k1, m2, λ) f 0(k1, m2) f 0(k1, m2)

= (−iλ)3(i )4I (2)
log 2(m

2, λ2,3) = i B(2)
1 . (77)

We have just defined another logarithmic divergent quantity which is characteristic
of the two-loop order. Note the explicit appearance of coupling constant. This
should emphasize the fact that the amplitude depends on a two-point function
subdiagram, which has been properly renormalized. All counterterms possessing
such type of subdiagram will look like this.

I (2)
log 2(m

2, λ2,3) =
∫
3

d6k1

(2π )6

1(
k2

1 −m2
)4 {i6(1)

R

(
k2

1

)}
(78)

The finite part is

0̄1
fin + 0̄3

fin =
∫

d6k1

(2π )6
R(k1, m2, λ){ f 0(k1, m2) f fin(p′, k1, m2)

+ f fin(p, k1, m2) f 0(k1, m2)

+ f fin(p, k1, m2) f fin(p′, k1, m2)}. (79)

It is not necessary to give explicit expressions for the finite part and therefore we
make explicit the divergent contributions only.

Now we consider the diagram corresponding to the second contribution
−iV (2)

2 (p, p′) which belongs to class one (Fig. 3). The amplitude reads

−iV (2)
2 (p, p′) =

∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6
R(k1, k2, m2, λ)

× f (p, k1, m2) f (p′, k1, m2) f (p′, k2, m2) (80)

Fig. 3. The two-loop vertex correction contribution−iV (2)
2 (p, p′).
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with

R(k1, k2, m2, λ) = (−iλ)5(i )6(
k2

1 −m2
)(

k2
2 −m2

)
[(k1− k2)2−m2]

. (81)

Using the IRT we have

−iT 0V (2)
1 (p, p′) = 0div

local+ 01
fin + 0nonlocal (82)

where

0div
local = (−iλ)5(i )6I (2)

log 1(m
2,3) = i B(2)

2

=
∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6

(−iλ)5(i )6(
k2

1 −m2
)3(

k2
2 −m2

)2
[(k1− k2)2−m2]

= (−iλ)5(i )6
∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6
ϒ (2)(k1, k2, m2). (83)

In this type of structure (to all orders) the nonlocal contribution0nonlocalwill have
the form

0nonlocal= 03
fin + 0div

nonlocal (84)

and in this case we have

0div
nonlocal= (−iλ)5(i )6

∫
= d6k1

(2π )6

∫
3

d6k2

(2π )6
4(1)(k1, p, p′, m2)ϒ (1)(k2, m2).

(85)

Note that this term is completely written in terms of one-loop contributions already
considered. Therefore it poses no problem to renormalization. This particular ex-
ample illustrates a basic difference between the present method and others: The
subdivergences need not be previously identified. They appear algebraically. In
cases where it is simple to identify the subdivergences, this is not necessarily a
great advantage. However in higher orders it might become considerably simpler
to identify all divergent substructures in an algebraic fashion. In fact, as will be-
come clear in what follows, the procedure is designed to display all relevant (to
renormalization) subdivergences. The finite contributions can be written as

0
(2)
R = 0(1)

fin + 0(3)
fin

= (−iλ)5(i )6
∫

d6k1

(2π )6

∫
d6k2

(2π )6
4(1)(k1, k2, p, p′, m2). (86)

with

4 = (−iλ)5(i )64(2)(k1, k2, p, p′, m2)

4 = R(k1, k2, m2, λ)× { f fin(k1, p, m2) f fin(k1, p′, m2) f fin(k2, p′, m2)
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Fig. 4. The two-loop vertex correction contribution
−iV (2)

3 (p, p′).

+ f 0(k1, m2) f 0(k1, m2) f fin(k2, p′, m2)

+ f 0(k1, m2) f fin(k1, p′, m2) f fin(k2, p′, m2)

+ f fin(k1, p, m2) f 0(k1, m2) f fin(k2, p′, m2)}

+ (−iλ)5(i )6
(
2k1 · k2− k2

1

)
4(1)(k1, p, p′, m2)(

k2
2 −m2

)3
[(k1− k2)2−m2]

. (87)

The last term in the above equation is obtained by using the operation (12) consid-
eringk1 as external momentum. This is necessary to identify the one-loop structure.

The last two-loop diagram−iV (2)
3 (p, p′) is depicted in Fig. 4. The corre-

sponding amplitude is

−iV (2)
3 (p, p′) =

∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6
{R(k1, k2, m2, λ) f (p, k1, m2)

× f (p′, k2, m2) f (p− p′, k1− k2, m2)} (88)

with

R(k1, k2, m2, λ) = (−iλ)5(i )6(
k2

1 −m2
)(

k2
2 −m2

)
[(k1− k2)2−m2]

. (89)

Using the IRT we have

−iT 0V (2)
1 (p, p′) = 0div

local+ 0R (90)

where

0div
local = iλ5

∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6

1(
k2

1 −m2
)2(

k2
2 −m2

)2
[(k1− k2)2−m2]2

= iλ5I (2)
log 3(m

2,3) = i B(2)
3 . (91)

We defined above another logarithmic divergent quantity. This diagram type is
often called a primitively divergent diagram. Note that there are no subdivergences.
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Fig. 5. Then-loop vertex correction contribution−iV (n)
1 (p, p′).

3.1.3. The N-Loop Order

As discussed before we now consider only one contribution of each kind.
The vertex type contribution depicted in Fig. 5 is the first one. It will appear
as a substructure of the overlapping self-energy diagram which we will also
consider.

The amplitude corresponding to the vertex correction in Fig. 5 is

−iV (n)
1 (p, p′) = (5R)(5 f ) (92)

with

(5R) = (−iλ)2n+1(i )3n

{
n∏

j=1

∫
3

d6kj

(2π )6

1

k2
j −m2

}
Q(k1, ki+1, m2) (93)

where Q is the same function as defined in (58) and (59). The subscript 1 in
V (n)

1 (p, p′) refers to the fact that only one diagram is being considered (type 1).
The external momentum dependent part (5 f ) is given by

(5 f ) =
{

1

(p− k1)2−m2

} n∏
j=1

{
1

(p′ − kj )2−m2

}
. (94)

Using the IRT, we get

T0(5 f ) = { f 0(k1, m2)+ f fin(k1, p, m2)}

×
n∏

j=1

{ f 0(kj , m2)+ f fin(kj , p′, m2)}. (95)

In the same way we have

−iT 0V (n)
1 (p, p′) = 0local+ 01

fin + 0nonlocal. (96)
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Since02
fin = 0 we can write

0div
local = i B(n)

1

= (5R)0
1(k1, m2)

n∏
j=1

f 0
j (kj , m2)

= (−iλ)2n+1(i )3n I (n)
log 1(m

2,3)

= (−iλ)2n+1(i )3n
n∏

j=1

d6kj

(2π )6
ϒn(k1, k2, . . . kn, m2) (97)

and

0nonlocal= 03
fin + 0div

nonlocal (98)

where

0div
nonlocal= (−iλ)2n+1(i )3n

n∏
j=1

d6kj

(2π )6

×
n−1∑
a=1

4(a)(k1, . . . , ka; p, p′, m2)ϒ (n−a)(ka+1, . . . , kn; m2). (99)

Note that the above equation contains subdivergences which have already appeared
at lower orders and have already been included in the Lagrangian. Here we clearly
see that the application of the method displays all the subdivergencies in an alge-
braic way. Moreover it stresses the inductive character of the method. If we assume
that the theory is renormalized at (n− 1)th order, the contribution atnthorder will
solely depend on structures (finite and divergent) which have already played their
role at lower orders. Also it is noteworthy thatall divergencies and finite parts
of all previous orders play an important role atnth order. The above expression
clearly displays a difference between this method and BPHZ. In BPHZ one would
have to deal with the detailed topology of the diagram first. Here the counterterms
appear algebraically. This simplicity may be due to the example we are working
with. However, it constitutes even in this case a notorious simplification.

3.2. Two-Point Functions

3.2.1. The One-Loop Order

The self-energy has only one diagram contribution at one-loop level which
we identify in Fig. 6. It corresponds to the amplitude

i6(1)(p2) = λ2

2

∫
3

d6kj

(2π )6

1

(k2−m2)[( p− k)2−m2]
(100)
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Fig. 6. One-loop self-energyi6(1)(p2).

where

R(k, m2, λ) = λ2

2

1

(k2−m2)
. (101)

Using IRT we have

(T2)i6(1)(p2) = 0div
local+ 01

fin (102)

with

0div
local =

λ2

2

{
I (1)
quad(m

2,3)+ p2

[
gµν

4

6
I µν(1)
log (m2,3)− I (1)

log 1(m
2,3)

]}
, (103)

where we have defined

I (1)
quad(m

2,3) =
∫
3

d6k

(2π )6

1

(k2−m2)2
(104)

and

I µν(1)
log (m2,3) =

∫
3

d6k

(2π )6

kµkν

(k2−m2)4
. (105)

The finite part is

01
fin = 0R = λ2

2

∫
d6k

(2π )6
2(1)(k, p, m2)

= λ2

2

{∫
d6k

(2π )6

(p)4

(k2−m2)4

+
∫

d6k

(2π )6

(2p · k− p2)3

(k2−m2)4[( p− k)2−m2]

}
. (106)

The explicit calculation of the integral in the above equation leads to

0R = i6(1)
R (p2) = λ2

4

i

(4π )3

{
(p2− 3m2)F(m2, p2)− p2

2

}
(107)

whereF(m2, p2), for p2 < 4m2, is given by

F(m2, p2) =
√

4m2− p2

|p|

[
2 arctan

(√
4m2− p2

|p|

)
+ π

]
− 2 (108)
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and for p2 > 4m2,

F(m2, p2) = −
√

p2− 4m2

|p|

[
ln

(
|p| −

√
p2− 4m2

|p| +
√

p2− 4m2

)
+ iπ

]
− 2. (109)

We now summarize the results obtained so far for one-loop renormalization,

A(1) = iλ2

2

{
I (1)
log1(m

2,3)− 4

6
gµν I µν(1)

log (m2,3)

}
(110)

δ(1)m2 = λ2

2
i I (1)

quad(m
2,3) (111)

and

B(1) = −iλ2I (1)
log1(m

2,3) (112)

whereI (1)
log 1(m

2,3), I µν(1)
log (m2,3), andI (1)

quad(m
2,3) are defined in (56), (105), and

(104), respectively.

3.2.2. The Two-Loop Order

Two types of diagram contribute to the self-energy correction at two loops.
The total amplitude can be written as

6(2)(p2) = 26(2)
1 (p2)+6(2)

2 (p2). (113)

Here the counterterms to be identified are

A(2) = 2A(2)
1 + A(2)

2 (114)

δ(2)m2 = 2δ(2)
1 m2+ δ(2)

2 m2. (115)

The first amplitudei6(2)
1 (p2) corresponds to the diagram in Fig. 7. This is the same

case that we have seen in Eq. (71). Considering the one-loop renormalization we
can write

0̄ = i 6̄(2)
1 (p2) =

∫
d6k

(2π )6

(−iλ)2(i )3(
k2

1 −m2
)2

[( p− k1)2−m2]

{
i6(1)

R

(
k2

1

)}
. (116)

Fig. 7. The two-loop self-energy contributioni6(2)
1 (p2).
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Then we apply IRT and obtain

iT 26̄
(2)
1 (p2) = 0̄div

local+ 0̄1
fin (117)

in which

0̄div
local = λ2i

{
I (2)
quad 2(m

2, λ2,3)

+ p2

[
4gµν

6
I µν(2)
log2 (m2, λ2,3)− I (2)

log2(m
2, λ2,3)

]}
(118)

and

I (2)
quad2(m

2, λ2,3) =
∫
3

d6k1

(2π )6

1(
k2

1 −m2
)3 {i6(1)

R

(
k2

1

)}
(119)

I µν(2)
log2 (m2, λ2,3) =

∫
3

d6k1

(2π )6

kµkν(
k2

1 −m2
)5 {i6(1)

R

(
k2

1

)}
(120)

whereas

0̄1
fin = λ2i

∫
d6k1

(2π )6

{
p4(

k2
1 −m2

)5
+ (2p · k− p2)3(

k2
1 −m2

)4
[( p− k1)2−m2]

}{
i6(1)

R

(
k2

1

)}
. (121)

The second amplitudei6(2)
(2)(p2) corresponds to the diagram in Fig. 8.

It reads

i6(2)
(2)(p2) =

∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6
R(k1, k2, m2, λ) f (p, k1, m2) f (p, k2, m2)

(122)

with

R(k1, k2, m2, λ) = 1

2

{
(−iλ)4(i )5(

k2
1 −m2

)(
k2

2 −m2
)
[(k1− k2)2m2]

}
. (123)

Fig. 8. The two-loop self-energy contributioni6(2)
2 (p2).
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The same procedure enables us to write

0div
local =

iλ4

2

{
I (2)
quad 1(m

2,3)

+ 2p2

[
4gµν

6
I µν(2)
log1 (m2,3)− I (2)

log1(m
2,3)

]}
(124)

where

I (2)
quad 1(m

2,3) =
∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6

× 1(
k2

1 −m2
)2 (

k2
2 −m2

)2
[(k1− k2)2−m2]

(125)

I µν(2)
log1 (m2,3) =

∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6

× kµ2 kν2(
k2

1 −m2
)2 (

k2
2 −m2

)2
[(k1− k2)2−m2]

(126)

and the finite part coming from this contribution is

02
fin =

iλ4

2
(I1+ 2I2+ I3) (127)

with

I1 =
∫

d6k1

(2π )6

∫
d6k2

(2π )6

p4(
k2

1 −m2
)3 (

k2
2 −m2

)3
[(k1− k2)2−m2]

(128)

I2 =
∫

d6k1

(2π )6

∫
d6k2

(2π )6

−4p4(p · k2)3(
k2

1 −m2
)3 (

k2
2 −m2

)4
[(k1− k2)2−m2]

(129)

I3 =
∫

d6k1

(2π )6

∫
d6k2

(2π )6

16(p · k2)2(p · k2)2(
k2

1 −m2
)4 (

k2
2 −m2

)4
[(k1− k2)2−m2]

(130)

0nonlocal= 03
fin + 0div

nonlocal. (131)

In terms of functions2(1)(ki , p, m2) andϒ (1)(ki , m2) we can write

0div
nonlocal=

(−iλ)4(i )5

2

∫
3

d6k1

(2π )6

∫
3

d6k2

(2π )6

{
2(1)(k1, p, m2)ϒ (1)(k2, m2)

+ 2(1)(k2, p, m2)ϒ (1)(k1, m2)
}
. (132)

Note thatϒ (1) is (the integrand of a) logarithmic divergence, which, in DR would
give us 1/ε and when multiplied by the remaining pieces of the amplitude would
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produce the celebrated term lnp2/ε (Kaku, 1993). The (other) finite contributions
are

01
fin =

(−iλ)4(i )5

2

∫
d6k1

(2π )6

∫
d6k2

(2π )6
2(2)(k1, k2, p, m2) (133)

and

03
fin =

(−iλ)4(i )5

2

∫
d6k1

(2π )6

∫
d6k2

(2π )6

×
{
2(1)(k1, p, m2)

2k1 · k2− k2
1(

k2
2 −m2

)3
[(k1− k2)2−m2]

+2(1)(k2, p, m2)
2k1 · k2− k2

2(
k2

1 −m2
)3

[(k1− k2)2−m2]

+
∫

d6k1

(2π )6

∫
d6k2

(2π )6
R(k1, k2, λ)

× f fin(p, k1, m2)[ f1(k2, m2)+ f2(k2, m2)]

+ f fin(p, k2, m2)[ f1(k1, m2)+ f2(k1, m2)]}} . (134)

Summarizing, the two-loop renormalization constants obtained are,

A(2) = λ4

2

[
4

6
gµν I µν(2)

log 1 (m2,3)− I (2)
log 1(m

2,3)

]
+ λ2

[
4

6
gµν I µν(2)

log 2 (m2, λ2,3)− I (2)
log 2(m

2, λ2,3)

]
(135)

δ(2)m2 = −
[
λ4

2
I (2)
quad1(m

2,3)+ λ2I (2)
quad 2(m

2, λ2,3)

]
(136)

and

B(2) = λ4
[
I (2)
log 1(m

2,3)+ I (2)
log 3(m

2,3)
]
+ 3λ2I (2)

log2(m
2, λ2,3) (137)

where

I (2)
log 1(m

2,3), I µν(2)
log 1 (m2,3), I (2)

log 2(m
2, λ2,3), I µν(2)

log 2 (m2, λ2,3), I (2)
log 3(m

2,3)

and

I (2)
quad1(m

2,3), I (2)
quad2(m

2, λ2,3)

are defined in Eqs. (56), (126), (78), (120), (91), (125), and (119), respectively.
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Fig. 9. Then-loop self-energy contributioni6(n)
1 (p2).

3.2.3. The N-Loop Order

Let us first consider the overlapping self-energy diagram of Fig. 9. It corre-
sponds to the amplitude

i6(n)
1 (p2) = (5R)(5 f ) (138)

with

(5R) = (−iλ2n)(i )3n−1

2

{
n∏

j=1

∫
3

d6kj

(2π )6

1

k2
j −m2

}
Q(ki , ki+1, m2). (139)

The external momentum dependent part is

(5 f ) =
n∏

j=1

1

[( p− kj )2−m2]
. (140)

Using the technique we have, as usual

iT 26
(n)
1 (p2) = 01

fin + 0local+ 0nonlocal (141)

where

01
fin =

(−iλ)2n(i )3n−1

2

n∏
j=1

∫
d6kj

(2π )6
2(n)(k1, k2, . . . kn; p, m2) (142)

and

0local = 02
fin + 0div

local

= (5R)
n∏

j=1

{ f 0(kj , m2)+ f 1(kj , m2, p)+ f 1(kj , m2, p)}. (143)

In this case we have02
fin 6= 0. The counterterms characteristic of thenthorder are

identified in the equation

0div
local = i

(
δ

(n)
1 m2− A(n)

1 p2
)
.
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The nonlocal part is

0nonlocal= 03
fin + 0div

nonlocal. (144)

where

0div
nonlocal=

(−iλ)2n(i )3n−1

2

n∏
j=1

∫
3

d6kj

(2π )6

×
{

n−1∑
a=1

2(a)(k1, k2, . . . , ka; p2, m2)ϒ (n−a)(ka+1, . . . , kn, m2)

+
n−1∑
a=1

ϒ (n−a)(k1, k2, . . . , kn−a; m2)2(a)(kn−a+1, . . . , kn; p2, m2)

+
n−1∑

a,b=1

ϒ (b)(k1, k2, . . . , kb; m2)2(a)(kb+1, . . . , ka; p2, m2)

× ϒ (n−a−b)(ka+1, . . . , kn; m2)

}
(145)

From the above equation it becomes clear that the renormalization of the self-
energy tonth-order requires all finite functions defined in previous self-energy
diagrams (up to (n− 1)th-order) as well as all the divergent contributions of the
three-point functions also to the (n− 1)th-order. We may associate a graphical
representation to the equation above and, in this way, compare with the BPHZ
results. The first term in Eq. (145) contains a sum ofn− 1 terms comprising
a finite functions of the type2 multiplied by then− a divergent vertex-type
functions. The second term is symmetric to the first one (the vertex functions and
functions2 swap sides). Finally the last term contains vertex corrections to the
left and to the right and finite functions in the middle. This can be best visualized
in the graph which follows (Fig. 10).

Notice that in the present procedure no special treatment has been given to
the overlapping divergencies or to the nested ones, both appearing in the self-
energy. The reason is that the algebraic procedure produces only disjoint divergent
contributions.

In order to complete the renormalization of this theory we will still consider
two cases, both belonging to the second class defined previously. Firstly we con-
sider a specific case where two-point functions explicitly appear as subdivergences
(see Fig. 11) and the other is an amplitude containing an overlapping divergence
diagram as substructure (Fig. 12). As we mentioned before, the total integral con-
tains the two-point function substructures in factorized form. We therefore effect
the renormalization of the internal propagators directly using the counterterms
of order. In this way we immediately obtain̄0. Let us first consider the case in
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Fig. 10. Graphic representation of Eq. (145).

Fig. 11. This diagram contains subdiagrams involving nested two-point functions.
Following the prescription which display the renormalized contributions of previ-
ous orders we get

0̄ = i ¯
6n−1

a,b=1z
(n)

2
(p2)

= (−iλ)2(i )3
∫
3

d6kn

(2π )6

1(
k2

n −m2
)2

[( p− kn)2−m2]

× i
{

T2
kn
6̄

(n−1)
2

(
k2

n

)+ δ(n−1)
2 m2− A(n−1)

2 k2
n

}
(146)

Fig. 11. Then-loop self-energy contributioni6(n)
2 (p2).
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Fig. 12. Then-loop self-energy contributioni6(n)
3 (p2).

with

i 6̄(n−1)
2

(
k2

n

) = (−iλ)2(i )3
∫
3

d6kn−1

(2π )6

1(
k2

n−1−m2
)2

[(kn − kn−1)2−m2]

× i
{

T2
kn−1
6̄

(n−2)
2

(
k2

n−1

)+ δ(n−2)
2 m2− A(n−2)

2 k2
n−1

}
(147)

...

i 6̄(2)
2

(
k2

3

) = (−iλ)2(i )3
∫
3

d6k2

(2π )6

1(
k2

2 −m2
)2

[(k3− k2)2−m2]

× i
{
T2

k2
6(1)

(
k2

2

)+ δ1m2− A(1)k2
2

}
(148)

i6(1)
(
k2

2

) = (−iλ)2(i )2
∫
3

d6k1

(2π )6

1(
k2

1 −m2
)2

[(k2− k1)2−m2]
. (149)

We can substitute the terms in brackets by renormalized function

6̄
(n−1)
2R

(
k2

n

) = 0(n−1)
R

= T2
kn
6̄

(n−1)
2

(
k2

n

)+ δ(n−1)
2 m2A(n−1)

2 k2
n. (150)

In this example the two-point function counterterms can be obtained for any order
n > 1 as

i δ(n)
2 m2 = (−iλ)2(i )3

∫
3

d6kn

(2π )6

1(
k2

n −m2
)3 {i 6̄(n−1)

2R

(
k2

n

)}
(151)

i A(n)
2 = (−iλ)2(i )3

{
4

6
gµν

∫
3

d6kn

(2π )6

kµkν(
k2

n −m2
)5 {i 6̄(n−1)

2R

(
k2

n

)}

−
∫
3

d6kn

(2π )6

1(
k2

n −m2
)4 {i 6̄(n−1)

2R

(
k2

n

)}}
. (152)
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Finally we will consider the type 3 diagram (which contain a type 1 diagram)
shown in Fig. 12. The corresponding amplitude reads

i6(n)
3 (p2) = (−iλ)2(i )3

∫
3

d6kn

(2π )6

1(
k2

n −m2
)2

[( p− kn)2−m2]

{
i6(n−1)

1

(
k2

n

)}
.

(153)

Note that since the structure
∑(n−1)

1 (k2
n) can be renormalized at (n− 1)th order

(see first example of ordern), thenthorder structure will also be renormalized by
a0div

nonlocal. Its counterterms have the same form as in the previous example. They
are

i δ(n)
3 m2 = (−iλ)2(i )3

∫
3

d6kn

(2π )6

1(
k2

n −m2
)3 {i6(n−1)

1R

(
k2

n

)}
(154)

i A(n)
3 = (−iλ)2(i )3

{
4

6
gµν

∫
3

d6kn

(2π )6

kµkν(
k2

n −m2
)5 {i6(n−1)

1R

(
k2

n

)}

−
∫
3

d6kn

(2π )6

1(
k2

n −m2
)4 {i6(n−1)

1R

(
k2

n

)}}
. (155)

Note that in this case the three-point function subdiagrams have been renormalized
together with the two-point subdiagram, since it is contained in the latter.

4. MOMENTUM ROUTING INDEPENDENCE

In the examples of the previous sections we have chosen the momentum
routing in such a way as to obtain the simplest form for the final expressions. Of
course, the counterterms so obtained must be independent of the particular routing
one chooses. In order to exemplify this we consider the last example given (type 3
diagram). One of the possible choices for the momentum routing would be to
arrange the labels in such a way that external momentum is present in an internal
line of the diagram as follows

i6(n)
3 (p2) = (−iλ)2(i )3

∫
3

d6kn

(2π )6

1(
k2

n −m2
)2

[( p− kn)2 −m2]2

{
i6(n−1)

1 ((p− kn)2)
}
.

(156)

and also,

i6(n)
3 (p2) = (−iλ)2(i )3

∫
3

d6kn

(2π )6

1(
k2

n −m2
)2

[( p− kn)2−m2]

{
i6(n−1)

1

(
k2

n

)}
.

(157)
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These two labels must be equivalent, so that the amplitude is momentum routing
independent as it should. Note that if the amplitude were finite, this could immedi-
ately be accomplished through a shiftp− kn = k′n. However, since the amplitude
is quadratically divergent, shifts are not allowed without the inclusion of surface
terms. This point has been extensively discussed in our method (see Battistel,
1999; Battistelet al., 1998; Scarpelliet al., 2001) and a similar procedure can cure
this problem in the present model. More difficult would be theories with gauge
symmetries and work along this line is in progress. Note that in Dimensional
Regularization the problem does not appear since shifts are always allowed.

5. CONCLUSION

We have considered (in the self-energy) all possible complications which
usually appear in renormalization procedures: Overlapping divergences, nested
divergencies, and disjoint ones, all in the same graph atn-loops. We have explicitly
shown how these problems can be systematically resolved order by order within
our technique in a simple example, devoid of symmetries abelian or not. However,
several general aspects of the method can be learned already from this simple case:
There will always be a divergent (local) order dependent contribution. Also, there
will always be a finite contribution composed by the product of all finite parts of
f j ’s. These two structures (divergent and finite) are typical of thenth order and
pose no problem for renormalization.

As we have seen in the examples given, the identities we use in the integrand
leave us then with crossed products of divergent and finite contributions. All possi-
ble combinations will appear and all of them can either be recognized as structures
(finite or divergent) already encountered in lower order amplitudes or they will
give a finite contribution.

In summary we have presented a completely algebraic method of perturbative
renormalization. All counterterms appear automatically, and present a close cor-
respondence to BPHZ where graphical representations are essential. We feel that
if our method also works for abelian and nonabelian theories this could be a major
advance. At the one-loop level we can preserve gauge symmetry if use is made of
relations involving divergent integrals of the same degree of divergence (Battistel,
1999; Battistelet al., 1998; Scarpelliet al., 2001). The difference among those
integrals is the source of both ambiguities and symmetry violations. The results
we got at one loop are encouraging. We are working on the application of this
method at the two-loop level, the Quantum Electrodynamic (QED).

We see that the application of this method leads to a relatively simple renor-
malization procedure. There is no need for a graphic representation of the relevant
contributions. When a diagram has divergent subdiagrams the subdivergences need
not be previously identified because they will appear in an algebraic way. The pro-
cedure displays all relevant subdivergences. Investigations of advantages of the
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present method (if at all!) over the existing ones remain as our main research
interest right now.
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del Águila, F., Culatti, A., Tápia, R. M., and P´erez-Victoria, M. (1997).Nuclear Physics B504, 532.
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